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1. Introduction 

The global optimization problem in a numerically well-defined sense can be 
formulated as 

find 2 s.t. f= f(i) is close to f* = ~ZIZ f(x) (11 

where K is a compact set in RN and f is a continuous function over K. Obviously, 
solving (1) requires the previous specification of some closeness criterion in order 
to evaluate the goodness of any feasible point 2. It is a trivial observation that if, 
for given positive E, an i is sought such that 

f*-pQ, (4 
then, under solely qualitative assumptions on f like continuity or differentiability 
up to a certain order, no algorithm can be given which terminates after a finite 
number of steps with a point ,iZ guaranteed to satisfy (2). 

The situation can be improved if quantitative assumptions on the objective 
function are introduced, e.g. the validity of a Lipschitz condition with known 
Lipschitz constant. In such a case results can be proven ([2]) asserting that an 
algorithm exists leading to f as accurate as required by (2); however, the number 
of evaluations of f needed may be as large as 

(L/2E)N, 

where L is the Lipschitz constant, and this is typically a large number. The reason 
for that is intrinsic to the idea of guaranteeing the achievement of a prefixed 
accuracy, and hence of taking into account the possibility of occurrence of the 
worst possible case. Therefore the idea naturally arises to relax prevention against 
the worst possible case, usually quite pathological and never occurring in the 
practice, and to take care only of cases that have some nonnegligible chance to 
occur. 
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A satisfactory treatment of changes of occurrence can be achieved only if the 
global optimization problem (1) is reformulated superimposing to the class of 
problems to be considered a probabilistic structure and an accuracy criterion is set 
up consequently. The Bayes theorem then provides the basic tool for adapting the 
superimposed probabilistic structure to information gained about the problem 
through function evaluations. 

Methods derived according to this framework will be referred to as Bayesian 
methods. The aim of this paper is to review the different probabilistic formula- 
tions of the global optimization problem and the related Bayesian methods as yet 
proposed. 

2. The Random Function Approach 

The approach dates back to the sixties (see [22] and references in [23]) and it is 
based on the idea of introducing a probabilistic model for the objective functionf 
in the form of a random function f(~, w), where w belongs to some measurable 
space fl over which a probability measure P is defined and, for fixed X, f(x, U) is a 
random variable, i.e. a measurable function of W. The actual function to be 
optimized is seen as a realization f(x) of $( X, m). It is useful to assume that, for 
almost every W, f(x, U) is a continuous function of X, so that a.s. 

exists under the hypothesis of compactness of K. For sake of brevity, the 
argument w will be frequently omitted in the sequel. 

Let Sn be a sequential n-step optimization strategy, that is a mapping of the 
function space considered over the set of R-tuples of points in K such that Sn( f) 
produces the points 

xi2 = %lh7 ftd3 . . . P xn-1, ft~n-1~~ (31 
The effectiveness of SE for the function f can be defined by the difference 

UL fl = m.p ft4 - fZ 

where X~ is given by (3) and fz = maxIsiGn f(xi), so that over the class { f(x, u)} 
Sn will display the average effectiveness 

WWrz, fll= 1 W,o fP’td~1 

= Qyx f(4) - Et f: 1. (41 

Then an optimal strategy Sz can be defined as any strategy minimizing (4), i.e. 
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ECUsZ, fN = $f ECU&, fl) 
n 

or, equivalently, such that 

ECf;*l= sy~E(f;) 3 
?I 

where f ~ ** is the largest function value attained by Sz. 
The determination of 8: can take profit of a standard dynamic programming 

approach; introducing the vectors zi of information available about f at step i, 
zi rz (xl f(xl)> ’ ’ . 2 xi, f(q)), the Bellman equations are to be solved 

~n(zn-lJ = Ty ~~~~~~f~~h f zpl} izn-l) 

uj(ziml) ZZ y$z E(“i+lCzj-l> x> f(xl) I ‘i-1) i=rz-1,...,2 

ul= yy-- EC+> f(x))) . (3 

Each equation defines the next point of the strategy Sz as the point where the 
max on the right hand side is attained. 

It is well known that serious problems arise from a computational point of view 
in dealing with Bellman equations even for moderate n; it is therefore usual 
practice to derive suboptimal strategies considering only a few or just use one of 
equations (5). For instance (u) 

this strategy can be said one-step optimal as, once i points have been obtained, 
the (i + 1) - of is determined in an optimal way. Differently from (5), the 
influence of this choice on future choices is not taken into account. 

(b) if, given zi, the next points xi+i and x~+~ are obtained according to the 
equations 

then the resulting strategy can be named two-step optimal. 
Clearly (6) and (7) can be applied sequentially without prefixing in advance the 

number of points at which one is willing to evaluate the function f. This, however, 
requires that some suitable stopping criterion be previously set up. Both for this 
aspect and with respect to implementation of (6) and (7), the situation is rather 
different if the problem is one-dimensional or multi-dimensional. In the former 
case, in fact, the Wiener process provides a manageable stochastic model of 
continuous multimodal functions, by which the distribution of f(x) given zj is 
easily obtained for each i and for each x; indeed this distribution is normal with 
mean 



BRUNO BETRO 

where fk = f(xk), i = 1, . . . , n, and variance 

.X CZ [xi-l > xi] i 
=cT2(x-xn),x>xn. (9) 

In (8) and (9) it is assumed that x1 is the origin of the Wiener process and that 
the xi’s are increasingly ordered. g2 is the parameter of the Wiener process which 
must be specified in advance. Under the Wiener model, the optimization problem 
on the right hand side of (6) is a multiextremal one, but the function to be 
maximized can be recognized as unimodal in each interval [xi-r, xJ. 

A relevant consequence of the Wiener model for f is that the conditional 
distribution of maxX f(x) can be expressed by the simple formula ([19]) 

where 

This result enables to deal probabilistically with the error max f(x) - maxi A. 
Algorithms based on the Wiener model and the error control provided by (10) 
have been proposed in [22], [32], [30], [3]; their performance has been shown to 
be fairly good on several test instances. 

In the multidimensional case, the easiest way to model an unknown continuous 
function is to consider Gaussian random functions. According to this model, for 
each n-tuple of points x1, . . . , x~, the joint density of the function values 
fW2 . . . > fkJ is multivariate normal (see, e.g., [1]) with mean and covariance 
matrix specified once the mean and covariance functions are given 
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Gaussian random functions have the attractive property that the posterior 
distribution of f(x) given f(~r) given f(~r), . . . , f(~~) is still normal, with mean 

It is therefore in principle straightforward to compute the expectations required 
for example by (7), as they simply require to integrate with respect to the normal 
distribution. But a serious difficulty arises when the next point has to be selected: 
indeed, the maximization problem involved, which turns out to be of the form 
~F&K 4(x, z~), is just a global one and, unlike in the one-dimensional case, 
there is no easy way to decompose it into a number of unimodal subproblems. It 
has been argued however ([25]) that exact maximization is not required, so that it 
may be sufficient for instance to evaluate $ at a number m (say m = 100) of 
random points and to select ~~+r as the one where the best value of 4 has been 
observed. Observe that it is the function #J to be evaluated in this procedure and 
not the objective function f. This implies that, if the evaluation cost of f is very 
high, the overhead cost can be relatively small, at least for moderate L Converse- 
ly, looking at (ll), (12), the storage and computational cost required by 4 may 
become prohibitively high for large L 

Several attempts have been made to reduce such overheads. Modelling f by a 
Gaussian random function, the complexity of (11) and (12) is a consequence of 
the model updating formulas given by Bayes theorem. Simplification is possible 
only if one drops the consistency of the model after ti observations with the model 
after n - 1 observations. In other words, the idea is to consider, for each n, a 
Gaussian random function such that pH(x) and V:(X) are given through simple 
expressions in xj, f(xi), i = 1, . . . , n, so that they will no longer be in general 
conditional means and conditional variances, Methods of this type have been 
introduced in [24] and [29], [31], [33], [34]. It is worth mentioning that the 
approach of &linskas is based on a number of axioms aimed at formalizing 
information available to a “rational” optimizer about the function behavior. It has 
to be finally remarked that no exact result about the distribution of the global 
maximum of a Gaussian random function is available in the multidimensional 
case. This means that, unless the number of function evaluations is fixed in 
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advance, the question of how to evaluate the error of an approximation f to the 
global optimum cannot be answered accurately. 

In the same framework of a stochastic model representing the function to be 
optimized is the information approach, recently reviewed in ([27]). In this 
approach, in the case of one-dimensional optimization problems with a single 
global extremum x*, a prior distribution is considered on the location of r*, a 
Gaussian distribution is assumed for the increments of the objective function 
depending on the location of x*, and the posterior density of x* is obtained after 
a number of function evaluations. Then an estimate of x* is obtained maximizing 
the posterior density, and this estimate is assumed as the next search point. Under 
suitable conditions the resulting algorithm has the property that the set of its 
accumulation points coincides with the set of local maxima. For the solution of 
multidimensional problems, it is proposed to transform the problem in a one- 
dimensional one by means of Peano maps. 

3. A Probabilistic Model for tbe Structure of Global Optimization 
Problems and the Multistart Method 

It is an obvious observation that a global optimization problem would be solved 
once all local minima were discovered. It is therefore common practice to try to 
reach all local maxima starting a local search from n points randomly (uniformly) 
drawn in K. The procedure is usually referred to as w&&u~~ method. If the 
number of local maxima is finite and apart from pathological situations, the 
procedure will achieve its goal with positive probability p; furthermore, p 
increases as the number of trials increases, so that n is usually taken large. It is 
conceivable that if it were possible to obtain information about p during the 
search procedure, then some stopping criterion could be set up avoiding to spend 
local searches superfluously. 

Following [28] it is useful to state the problem as follows. Assume that in K 
there is a finite number of local maxima, say xr , . . . , xl. Let A be a search 
algorithm which, starting from a point x in K leads to some point A(x) in K. 
Define 

X~~~{~~K:A(~)=~~~},i=l,...,k 

and assume that the sets XL! are Lebesgue measurable. Denoting by m the 
Lebesgue measure, assume that m(K) = m( U FC1 XL?), that is the set of starting 
points causing A not to converge to a local maximum has null measure. The set 
X,! is called region of attraction of ~~7 and the quantity oi = m(XL?)/m(K) is the 
share of ~~7. 

If Xl, . . . , Xn are i.i.d. random variables uniformly distributed in K, then 
P{XiEXZ!}=($,j=l ,..., n,i=l,..., 
lead to find Ni times the maximum x~?, 

k. The application of A to the Xi’s will 
with Ni 30 and Efel N, = n. Given the 

number of maxima k and the shares &, . . . , ok, then the vector (N1, . . . , Nk) 
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has the multinomial distribution 

P{Nl = nl, . . . , Nk = nk} = 
fl! 

n1. -*nk! 
, . ey . . l& . enk 

Askandt+,..., f!& are unknown, it is sensible to infer about them on the basis 
of the available observations. By (13), this problem can be seen as a problem of 
inference about a multinomial distribution with an unknown number of classes. 

Let W be the random variable representing the number of different local 
maxima found after n local searches, and let the random vector ( N1, . . . , NW) be 
such that Nj represents the number of times the j-th maximum among the W has 
been found. Let values W, ( nr, . . . ,n,+,) be observed, hj be the number of ni’s 
equal to j, and Sk[w] denote the set of all permutations of w different elements 
from {l,. . . , k}; then the likelihood is given by 

P{W=w,Nl=nl ,..., Nw=nw/k,Ol ,..., Ok} 

Once a prior distribution on the parameter space 6) = { (13r, . . . , @), k = 
1,2, . . . , EFzl ei = 1, f$ 2 0} is specified, the Bayes Theorem enables to obtain 
the posterior distribution of the unknown parameters k and or, . . . , ek. If the 
prior distribution on @ is given in the form 

where pj is the prior probability that the true number of local maxima equals j and 
pj is the conditional u priori distribution of (or, . . , 9) given that j is the true 
number of local maxima, then by (14) for k > w 

Having found w maxima, it is of interest to determine whether w = k (all 
maxima have been located) or w # k. Assume that there is a Zoss c for having 
decided w = k when w < k, and a loss C for having decided w < k when w = k; 
moreover, assume that right decisions have no losses. Then standard arguments 
show that it is optimal to decide w = k when 

cP{K> w 1 W= w, Nl = nl, . . . , NW = nw} 

< CP{K= w 1 W= w, Nl = nl,. . . , N,+, = nw} 

or, making use of (17), when 
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and to decide k > rv when (18) is not satisfied. 
A convenient choice for &del, . . . , dok) is the symmetric Dirichlet distribution 

([21]), i.e. a Dirichlet distribution with parameters all equal to some cx > 0. In 
particular, cx = 1 gives the uniform distribution on the k-dimensional simplex 
{Oi20, i=l,..., k EF= 1 0i = l}. Under a symmetric Dirichlet distribution, in 

(181 

= r(ka) II;zl r(a + ni) 
(r(a))T(ka + n) ’ 

so that after some simplifications (18) becomes 

(19) 

The optimal decision about the number of local maxima can now be obtained 
after the specification of the prior {pk}. The numerical behavior of rule (20) has 
been thoroughly investigated by Monte Carlo simulation in [9] in the case of a 
truncated Poisson distribution. In the simulated situations the rule has been found 
accurate and robust at a satisfactory level. 

If { pk} is taken as the improper distribution { pk = const}, which corresponds 
to the idea of any number of maxima being equally likely, then, for n > w + 2 it is 
optimal to decide k = w if the condition 

r~t2+t4qp2-~-q~l+~ 
r+p+-ij . c 

is satisfied. 
It is interesting to observe that, because of the improperness of the distribution 

{pk}, an optimal rule does not exist when n < w + 2. 
In case when k > w has been decided, it may be of interest to evaluate the total 

share of undiscovered regions. By (17) and (19) it is easy to obtain after some 
manipulations that, if -y = 1 - Eyzl ei, then the optimal estimate according to a 
quadratic loss function, is 

Note that both in (20) and in (21) the only observed quantity involved is the 
number of local maxima found. 
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The above decision setting assumes that rz is fixed. Assume now that the 
number of local searches is not fixed in advance, but they are started sequentially. 
Then after each of them is completed it is possible to decide whether to continue 
or not according to some criterion comparing the results obtained so far with the 
benefit expected from starting new searches. To be more precise, suppose that 
each local search has a fixed cost C, and that there is a loss A if not all the local 
maxima have been discovered, so that after n local searches the total loss is 

z4wn, q = 
Cn if We = K 
A + Cn if w,, < K 

where We is the number of discovered local maxima during the first n local 
searches. The expected posterior loss is then 

L(w) = E{L(Wn, K) 1 W* = w} 

=AP{K>~iW~=w}+cn=Aq~(w)+cn, 

where, by (17) and (19), 

cl”(W) = I- 
pJ(wa) /I-(wcl + n) 

k 
‘;=w+l Pk w 

c ) 
I-(ka) /I-(ka + n) 

The problem is now to find an optimal stopping rule N* which minimizes E(YN) 
over the class of stopping rules N, where, for c = C/A, 

Yn = qn + cn . 

As optimal stopping requires to look ahead for future observations given the 
present ones, the predictive probability 

wvn+1 =w+liWn=w} 

has to computed. Note that, once Wn = w, the only possible values for Wn+* are w 
and w+l. 

A moment consideration shows that the above probability is just the probability 
of starting the next search within the region of attraction of a maximum not yet 
discovered, that is the expected total share of undiscovered maxima, so that, by 

WI> 

pwn+1 = w + 11 W,, = w} = E(y 1 Wm = w) = T(w) . (23) 

Formula (23) can now be used to show that the sequence Yn is a submartingale 
([12]) and hence an Z exists such that P{N* G fi} = 1. The actual construction of 
W can be achieved by backward induction (see, e.g. [13]). It is possible to derive 
analogous results for losses different from (22), see [lo] and [ll]. It has to be 
observed that all the proposed loss functions (including the one in the following 
Section) provide rather crude, although computationally convenient, approxima- 
tions to “real” losses suffered by actual users; in particular the assumption that 
each local search has a fixed computational cost is rather naive. This is likely to be 
cause of some difficulties in assessing the loss function parameters. However, this 
is an usual situation in applications of StaGstical Decision Theory (see, e.g., the 
discussion in [4]). 
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A drawback of the approach is that the function values at the maxima are not 
taken into account. It has been recently observed ([26]) that in the case that 
different maxima have different values, it is possible to incorporate ordering 
information about the maxima induced by their function values. Then stopping 
rules can be provided under losses based on the number and the shares of maxima 
not yet found but “better”, with respect to function value, than the best 
maximum found so far. It is reasonable to expect that such rules have better 
performance in actual situations than the ones not based on the ordering. 
Supporting evidence is presented in [26] for standard test problems from [14]. 

4. A Bayesian Model for the Distribution of the Sampled Maxima 

The approach presented in the previous section, even with the improvement 
proposed in [26], is unable to deal explicitly with function values, neglecting this 
way important information about the structure of the problem. A way of 
circumventing this situation has been proposed in [7], following ideas introduced 
in [5]. 

Let ti =f(~~!), i = 1, . . . , n, be the optimum values sampled by the multistart 
methods after n steps. Assume that each local search has a fixed cost c > 0, 
expressed in the same units asf, and that the cost connected with stopping at step 
n is 

I,(&, . . . , tn ; c) = - $1 + nc (24) 
where tCEj = maxjZ1 ~ ~ , * t.. The cost (24) combines the cost of a new local search 
with the gain corresponding to a unit increase in the maximum observed value. 

The observations t, are independent realizations of a random variable T whose 
distribution F is unknown (except for trivial cases). Observe that, in case the 
distribution were known, the problem of optimally stopping the multistart method 
would be solved. Indeed, under (24), the problem is the one of stopping 
sequential sampling from a distribution F which is referred to in the literature as 
optimd sumpling with recalZ ([13]): when F is known, the optimal stopping rule is 
to stop the sampling process as soon as 

1 

m 
~(“~ CL - q?J dF(tl sz c 7 (25) 

or equivalently, 

1 

cc 

%t) 
(1 - F(t)) dt G c . WI 

As F is unknown, it is necessary to adopt some model of it. This has the 
consequence that it is no longer possible to determine the optimal stopping rule, 
but the model hereafter described enables to derive easily suboptimal rules which 
perform satisfactorily in practice. 

Following the ideas of Bayesian nonparametric analysis ([16], [17], [15], [lS]) a 
class of random distribution functions in the family of neutrd to the right can be 
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introduced as a model for the unknown distribution function. A class in this 
family is described by the process 

F(t) = 1 - exp(- Y(l)) , (271 

where Y(L) is a stochastic process a.s. nondecreasing and right continuous with 
lim ~~-~ Y(t) = 0 and lirnt+,- Y(t) = co. In [7], the simpZe homogeneous process 
introduced in [18] was considered for its manageability in presence of coinciding 
observations, as it is the case for the optimum values generated by the multistart 
method. This process yields through (27) a probability measure which satisfies the 
basic requirements for being a suitable u priori probability measure over the class 
of distribution function ([16]): ( ) .t a r s support is wide enough to contain all 
distributions of practical interest: (b) the posterior probability given a sample 
from it is computationally tractable. 

It can be proved that, under a simple homogeneous process Y(l), given a 
sample tl, . . . , tn from F(t) as in (27), the posterior Bayesian estimate of F(L) is 
given by 

where y is a continuous nondecreasing function with y(-m) = 0 and y(a) = m; A is 
a positive parameter; l(i), . . . , lCnO) are the increasingly ordered distinct observa- 
tions in the sample; 

mj = #{observations > tCjj} ; 

n(t) = #{distinct observations G t} ; 

m(t) = #{observations > t} ; 

As it seems to be out of question to find an optimal stopping rule under the loss 
(24) and the simple homogeneous process, it is natural to consider suboptimal 
rules. /c-step look ahead (k&z) rules ([4]) f re q uently represent useful approxima- 
tions to optimal stopping rules; a k-slu rule calls for stopping the sampling process 
as soon as the current cost is not greater than the cost expected if at most k 
further observations are taken. Under a stochastic model for F, either parametric 
or nonparametric, the l-&z is found to be the rule which prescribes stopping as 
soon as 

where fin(l) = .E(F(l) 1 tl, . . . , tn), or equivalently 
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Stopping is prescribed by the 2-da rule when 

(1 - &(l)) dt 

T 
where E n’l’n stands for expectation with respect to the conditional distribution of 
T n+l given the first n observation. 

As fin(t) is the predictive distribution of the next observation given the first n 
observations, (30) says that stopping occurs according to the l&a as soon as the 
expected improvement in the best sampled value determined by a further 
observation is not larger than c. Observe that (29) has the same form as (25) and 
(30) has the same form of (26), with pn in place of F, which shows that the 
optimal rule when F is known is actually a l&a. 

Looking at (28) and (30), it is easily seen that the 1-sZa is easily implemented if 

Sr e Y@)‘* is easily obtainable for any a. As y and A are parameters of the model, 
they can be chosen in accordance with this condition. It can be seen that, if 

~0~~~ = ~~~~~~~ is a prior guess for F(l), then F,,, A and -y are linked by the 
equation 

which is helpful for assessing the prior parameters. 
Implementation of the 2-da is more cumbersome, but it can be worked out 

numerically (see [7] for the details). It should be noted that, due to the fact that 
whenever a k-da says to continue it is optimal to continue, then the 2-da needs to 
be invoked only when the l-da says to stop. 

1- and 2-sZa have been tested for the standard test problems of [14] ([7]), for 
randomly generated problems in up to six dimensions and with various degrees of 
complexity ([6]), and for randomly generated distribution functions F(t) ([8]). 
The results show that the percentage of failures in finding the global maximum is 
low, with a moderate number of local searches performed before stopping, both 
for the 1-sZa and for the 2-sZa: actually the behavior of the two rules is nearly 
indistinguishable. This fact leads to the conclusion that the 1-sZa rule is, because 
of its simplicity and effectiveness, an attractive stopping rule for the multistart 
method. It is to be observed that the fact that the two rules are close does not 
imply that they are close to the optimal one: however the analysis performed in 
[8] shows that, under reasonable tuning of the prior parameters, the two 
approximate rules can be made close to the optimal rule built under perfect 
knowledge of the distribution of the sampled optimum values, that is of the very 
structure of the problem. 

5. Conclusions 

Three Bayesian approaches to global optimization have been reviewed. They 
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share the idea of dealing with uncertainty about the problem according to the 
Bayesian paradigm; each of them is however characterized by a different prob- 
abilistic formulation of the problem structure. It is worth to recall that the random 
function approach considers a stochastic model of the whole function to be 
optimized, and it is aimed at developing optimization algorithms which are 
optimal in some sense; in the other two approaches the modelization is restricted 
to features of the objective function which are relevant for the performance of the 
multistart algorithm, with the scope of deriving effective rules for the statistical 
control of the algorithm itself. Thus the random function approach is the only 
applicable one in situations in which the possibility of effectively performing local 
searches is ruled out, by very costly function evaluations or by low function 
regularity. When the multistart algorithm can be sensibly adopted, the approach 
outlined in Section 4 offers, unlike the one of Section 3, the attractive possibility 
of taking into account explicitly information provided by function values at the 
sampled extrema. However, the possibility of providing a comparative numerical 
evaluation of the three approaches is related to the general question of the 
evaluation of performances of global optimization algorithms. A satisfactory 
answer to this question would require the definition of a standard evaluation 
environment (set of test functions, local search routine, algorithm 
parameters, . . .) and of standard performance criteria. Unfortunately, after the 
early attempt in [14], no further effort has been devoted to such a definition. It is 
to be remarked in particular that the set of test functions of [14] is very limited in 
size and in complexity (few local extrema, up to six variables), so that the need is 
felt for the introduction of a wider and more significant set of test functions. With 
respect to this, the author recalls his proposal (see [5]) of exploiting the concept 
of generuked metric interpozation ([20]) for generating global optimization test 
functions (see also [6]), h aving full control of features like number of variables, 
number, values and locations of the extrema, degree of regularity. 
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